Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2115955

ABSTRACT

Recently, a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant. This finding raised concerns that the recombinant virus might exhibit altered biological properties as compared to the parental viruses and might pose an elevated threat to human health. Here, using pseudotyped particles, we show that ACE2 binding and cell tropism of XD mimics that of BA.1. Further, XD and BA.1 displayed comparable sensitivity to neutralization by antibodies induced upon vaccination with BNT162b2/Comirnaty (BNT) or BNT vaccination followed by breakthrough infection. Our findings reveal important biological commonalities between XD and Omicron BA.1 host cell entry and its inhibition by antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , Viral Envelope Proteins/genetics , BNT162 Vaccine , Membrane Glycoproteins/metabolism
2.
Cell Rep ; 39(5): 110754, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-2113939

ABSTRACT

Rapid spread of SARS-CoV-2 variants C.1.2 and B.1.621 (Mu variant) in Africa and the Americas, respectively, as well as a high number of mutations in the viral spike proteins raised concerns that these variants might pose an elevated threat to human health. Here, we show that C.1.2 and B.1.621 spike proteins mediate increased entry into certain cell lines but do not exhibit increased ACE2 binding. Further, we demonstrate that C.1.2 and B.1.621 are resistant to neutralization by bamlanivimab but remain sensitive to inhibition by antibody cocktails used for COVID-19 therapy. Finally, we show that C.1.2 and B.1.621 partially escape neutralization by antibodies induced upon infection and vaccination, with escape of vaccine-induced antibodies being as potent as that measured for B.1.351 (Beta variant), which is known to be highly neutralization resistant. Collectively, C.1.2 and B.1.621 partially evade control by vaccine-induced antibodies, suggesting that close monitoring of these variants is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus , Vaccination
3.
Viruses ; 14(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2110271

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitates viral entry into host cells and is the key target for neutralizing antibodies. The SARS-CoV-2 lineage B.1.620 carries fifteen mutations in the S protein and is spread in Africa, the US and Europe, while lineage R.1 harbors four mutations in S and infections were observed in several countries, particularly Japan and the US. However, the impact of the mutations in B.1.620 and R.1 S proteins on antibody-mediated neutralization and host cell entry are largely unknown. Here, we report that these mutations are compatible with robust ACE2 binding and entry into cell lines, and they markedly reduce neutralization by vaccine-induced antibodies. Our results reveal evasion of neutralizing antibodies by B.1.620 and R.1, which might have contributed to the spread of these lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Virus Internalization , Peptidyl-Dipeptidase A/metabolism , Antibodies, Neutralizing , Antibodies, Viral , Mutation
4.
PLoS One ; 17(3): e0265453, 2022.
Article in English | MEDLINE | ID: covidwho-1855002

ABSTRACT

Several SARS-CoV-2 variants emerged that harbor mutations in the surface unit of the viral spike (S) protein that enhance infectivity and transmissibility. Here, we analyzed whether ten naturally-occurring mutations found within the extended loop harboring the S1/S2 cleavage site of the S protein, a determinant of SARS-CoV-2 cell tropism and pathogenicity, impact S protein processing and function. None of the mutations increased but several decreased S protein cleavage at the S1/S2 site, including S686G and P681H, the latter of which is found in variants of concern B.1.1.7 (Alpha variant) and B.1.1.529 (Omicron variant). None of the mutations reduced ACE2 binding and cell-cell fusion although several modulated the efficiency of host cell entry. The effects of mutation S686G on viral entry were cell-type dependent and could be linked to the availability of cathepsin L for S protein activation. These results show that polymorphisms at the S1/S2 site can modulate S protein processing and host cell entry.


Subject(s)
Polymorphism, Genetic/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Chlorocebus aethiops , HEK293 Cells/virology , Humans , Immunoblotting , Vero Cells/virology
5.
Cell Host Microbe ; 30(8): 1103-1111.e6, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1821185

ABSTRACT

The Omicron variant of SARS-CoV-2 evades antibody-mediated neutralization with unprecedented efficiency. At least three Omicron sublineages have been identified-BA.1, BA.2, and BA.3-and BA.2 exhibits increased transmissibility. However, it is currently unknown whether BA.2 differs from the other sublineages regarding cell entry and antibody-mediated inhibition. Here, we show that BA.1, BA.2, and BA.3 enter and fuse target cells with similar efficiency and in an ACE2-dependent manner. However, BA.2 was not efficiently neutralized by seven of eight antibodies used for COVID-19 therapy, including Sotrovimab, which robustly neutralized BA.1. In contrast, BA.2 and BA.3 (but not BA.1) were appreciably neutralized by Cilgavimab, which could constitute a treatment option. Finally, all sublineages were comparably and efficiently neutralized by antibodies induced by BNT162b2 booster vaccination after previous two-dose homologous or heterologous vaccination. Collectively, the Omicron sublineages show comparable cell entry and neutralization by vaccine-induced antibodies but differ in susceptibility to therapeutic antibodies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , BNT162 Vaccine , Humans , Virus Internalization
6.
mBio ; 13(3): e0036422, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807325

ABSTRACT

SARS-CoV-2 variants of concern (VOC) acquired mutations in the spike (S) protein, including E484K, that confer resistance to neutralizing antibodies. However, it is incompletely understood how these mutations impact viral entry into host cells. Here, we analyzed how mutations at position 484 that have been detected in COVID-19 patients impact cell entry and antibody-mediated neutralization. We report that mutation E484D markedly increased SARS-CoV-2 S-driven entry into the hepatoma cell line Huh-7 and the lung cell NCI-H1299 without augmenting ACE2 binding. Notably, mutation E484D largely rescued Huh-7 but not Vero cell entry from blockade by the neutralizing antibody Imdevimab and rendered Huh-7 cell entry ACE2-independent. These results suggest that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy. IMPORTANCE The interaction of the SARS-CoV-2 spike protein (S) with the cellular receptor ACE2 is considered essential for infection and constitutes the key target for antibodies induced upon infection and vaccination. Here, using a surrogate system for viral entry, we provide evidence that a naturally occurring mutation can liberate SARS-CoV-2 from ACE2-dependence and that ACE2-independent entry may protect the virus from neutralization by an antibody used for COVID-19 therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral , COVID-19/therapy , Cell Line , Chlorocebus aethiops , Humans , Mutation , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
7.
Cell ; 185(3): 447-456.e11, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1712497

ABSTRACT

The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent patients or individuals vaccinated with the BioNTech-Pfizer vaccine (BNT162b2) with 12- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1 (Astra Zeneca-Oxford)/BNT162b2 vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Cell Line , Chlorocebus aethiops , Female , Humans , Male , Protein Binding , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vaccination , Vero Cells
8.
Cell Mol Immunol ; 19(3): 449-452, 2022 03.
Article in English | MEDLINE | ID: covidwho-1603596

ABSTRACT

Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Humans , Mutation/immunology , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization
11.
Cell Rep ; 37(2): 109825, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1439920

ABSTRACT

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), B.1.617.2, emerged in India and has spread to over 80 countries. B.1.617.2 replaced B.1.1.7 as the dominant virus in the United Kingdom, resulting in a steep increase in new infections, and a similar development is expected for other countries. Effective countermeasures require information on susceptibility of B.1.617.2 to control by antibodies elicited by vaccines and used for coronavirus disease 2019 (COVID-19) therapy. We show, using pseudotyping, that B.1.617.2 evades control by antibodies induced upon infection and BNT162b2 vaccination, although to a lesser extent as compared to B.1.351. We find that B.1.617.2 is resistant against bamlanivimab, a monoclonal antibody with emergency use authorization for COVID-19 therapy. Finally, we show increased Calu-3 lung cell entry and enhanced cell-to-cell fusion of B.1.617.2, which may contribute to augmented transmissibility and pathogenicity of this variant. These results identify B.1.617.2 as an immune evasion variant with increased capacity to enter and fuse lung cells.


Subject(s)
COVID-19/immunology , Immune Evasion/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/metabolism , COVID-19/therapy , COVID-19 Vaccines/immunology , Cell Fusion , Cell Line , Female , HEK293 Cells , Humans , Immune Evasion/physiology , Immunization, Passive/methods , Lung/pathology , Lung/virology , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , COVID-19 Serotherapy
12.
Cell Rep ; 36(3): 109415, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1283976

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants threatens efforts to contain the coronavirus disease 2019 (COVID-19) pandemic. The number of COVID-19 cases and deaths in India has risen steeply, and a SARS-CoV-2 variant, B.1.617, is believed to be responsible for many of these cases. The spike protein of B.1.617 harbors two mutations in the receptor binding domain, which interacts with the angiotensin converting enzyme 2 (ACE2) receptor and constitutes the main target of neutralizing antibodies. Therefore, we analyze whether B.1.617 is more adept in entering cells and/or evades antibody responses. B.1.617 enters two of eight cell lines tested with roughly 50% increased efficiency and is equally inhibited by two entry inhibitors. In contrast, B.1.617 is resistant against bamlanivimab, an antibody used for COVID-19 treatment. B.1.617 evades antibodies induced by infection or vaccination, although less so than the B.1.351 variant. Collectively, our study reveals that antibody evasion of B.1.617 may contribute to the rapid spread of this variant.


Subject(s)
Angiotensin-Converting Enzyme 2/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Viral/pharmacology , COVID-19 Drug Treatment , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Line , Humans , Protease Inhibitors/pharmacology , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination
13.
Cell Rep ; 35(3): 109017, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1163486

ABSTRACT

Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to farmed mink has been observed in Europe and the US. In the infected animals, viral variants arose that harbored mutations in the spike (S) protein, the target of neutralizing antibodies, and these variants were transmitted back to humans. This raised concerns that mink might become a constant source of human infection with SARS-CoV-2 variants associated with an increased threat to human health and resulted in mass culling of mink. Here, we report that mutations frequently found in the S proteins of SARS-CoV-2 from mink are mostly compatible with efficient entry into human cells and its inhibition by soluble angiotensin-converting enzyme 2 (ACE2). In contrast, mutation Y453F reduces neutralization by an antibody with emergency use authorization for coronavirus disease 2019 (COVID-19) therapy and sera/plasma from COVID-19 patients. These results suggest that antibody responses induced upon infection or certain antibodies used for treatment might offer insufficient protection against SARS-CoV-2 variants from mink.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Mink , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , A549 Cells , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/immunology , Chlorocebus aethiops , Cricetinae , Humans , Mink/immunology , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
14.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Article in English | MEDLINE | ID: covidwho-1141659

ABSTRACT

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Cell Line , Drug Resistance, Viral , Humans , Immunization, Passive , Kinetics , Membrane Fusion , Models, Molecular , Neutralization Tests , Serine Endopeptidases/metabolism , Solubility , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Virus Internalization , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL